National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Characterization and application of microwave plasma on wound healing
Truchlá, Darina ; Němcová, Andrea (referee) ; Krčma, František (advisor)
Non-thermal plasma has a lot of ways for using in nowadays medicine. It presents many useful actions like charged particles, UV light, electric field, radicals, excited atoms and molecules. That complicated chemistry directs to uncountable synergistic interaction between cold plasma and biological systems, involve cells and tissues. This thesis is about effects of cold plasma to wound healing. Two different microwave plasma systems were used for the presented study. The first one was argon plasma torch generated by surface wave using the quartz capillary, the second one was plasma torch with reverse vortex argon flow. Diagnostics of plasma jet by optical emission spectroscopy shown the presence of active particles, which are responsible for a lot of impact of plasma treatment. Concentrations of active particles generated by plasma are dependent on conditions of plasma generation like power of generator and gas flow. For visual evidence of effects on skin caused by active particles was created simulation of skin tissue. Interaction between plasma jet and artificial skin tissue shown that UV light and temperature are not responsible for all observed effects which are noticed after plasma treatment. Some part of experiments was realized in collaboration with Medical University of Sofia in Bulgaria. The theory of positive effect to wound healing was supported by experiments based on treating artificially created wounds on laboratory mice by cold plasma. It was proved, that process of wound healing is significantly shorter after using plasma treatment in comparison with normal wound healing. Plasma treating of wound for 10 seconds in two consequent days seems like more effectively than application of plasma only one day. This Thesis was carried out as a part of international project PLASMABORDER that was supported by European commission under cohesion funds; programme INTEREG SK-CZ under contract No. 304011P709.
Influence of plasma activated water on fungal diseases
Moskvina, Anastasia ; Krčma, František (referee) ; Kozáková, Zdenka (advisor)
This bachelor thesis focuses on influence of plasma treated water on fungal diseases. The theoretical part is dedicated to plasma-liquid interactions, properties and application of plasma activated water and its influence on different microorganisms. Plasma activated water contains reactive oxygen species which cause inactivation of living cells, making it a potential sterilizer. The experimental part of this work compares the effectiveness of three plasma treated water preparation techniques. Dielectric barrier discharge system was used to activate water above its surface. For the under the surface activation, a two-electrode system of both alternating and direct current was used. Plasma treated water was then used to prepare a suspended mixture with Aspergillus niger spores. The latter was then cultivated on agar plates for 72 hours. The overall effect was evaluated in amounts of colony forming units. The experimentally obtained data was processed and discussed in the results and discussion section of the thesis. It was found that the underwater surface activation had more significant effect on mold deactivation, which corresponds with the information contained in the theoretical part. Although the effect of dielectric barrier discharge was not as promising, all three methods used led to a decrease of colony forming units in comparison to the non-treated control sample.
Signaling effects of adenylate cyclase toxin action on phagocytes
Černý, Ondřej
The adenylate cyclase toxin (CyaA) plays a key role in the virulence of Bordetella pertussis. CyaA penetrates CR3-expressing phagocytes and catalyzes the uncontrolled conversion of cytosolic ATP to the key second messenger molecule cAMP. This paralyzes the capacity of neutrophils and macrophages to kill bacteria by oxidative burst and opsonophagocytic mechanisms. Here we show that CyaA suppresses the production of bactericidal reactive oxygen and nitrogen species in neutrophils and macrophages, respectively. The inhibition of reactive oxygen species (ROS) production is most-likely achieved by the combined PKA-dependent inhibition of PLC and Epac-dependent dysregulation of NADPH oxidase assembly. Activation of PKA or Epac interfered with fMLP-induced ROS production and the inhibition of PKA partially reversed the CyaA-mediated inhibition of ROS production. CyaA/cAMP signaling then inhibited DAG formation, while the PIP3 formation was not influenced. These results suggest that cAMP produced by CyaA influences the composition of target membranes. We further show here that cAMP signaling through the PKA pathway activates the tyrosine phosphatase SHP-1 and suppresses the production of reactive nitrogen species (RNS) in macrophages. Selective activation of PKA interfered with LPS- induced iNOS expression...
Characterization and application of microwave plasma on wound healing
Truchlá, Darina ; Němcová, Andrea (referee) ; Krčma, František (advisor)
Non-thermal plasma has a lot of ways for using in nowadays medicine. It presents many useful actions like charged particles, UV light, electric field, radicals, excited atoms and molecules. That complicated chemistry directs to uncountable synergistic interaction between cold plasma and biological systems, involve cells and tissues. This thesis is about effects of cold plasma to wound healing. Two different microwave plasma systems were used for the presented study. The first one was argon plasma torch generated by surface wave using the quartz capillary, the second one was plasma torch with reverse vortex argon flow. Diagnostics of plasma jet by optical emission spectroscopy shown the presence of active particles, which are responsible for a lot of impact of plasma treatment. Concentrations of active particles generated by plasma are dependent on conditions of plasma generation like power of generator and gas flow. For visual evidence of effects on skin caused by active particles was created simulation of skin tissue. Interaction between plasma jet and artificial skin tissue shown that UV light and temperature are not responsible for all observed effects which are noticed after plasma treatment. Some part of experiments was realized in collaboration with Medical University of Sofia in Bulgaria. The theory of positive effect to wound healing was supported by experiments based on treating artificially created wounds on laboratory mice by cold plasma. It was proved, that process of wound healing is significantly shorter after using plasma treatment in comparison with normal wound healing. Plasma treating of wound for 10 seconds in two consequent days seems like more effectively than application of plasma only one day. This Thesis was carried out as a part of international project PLASMABORDER that was supported by European commission under cohesion funds; programme INTEREG SK-CZ under contract No. 304011P709.
Signaling effects of adenylate cyclase toxin action on phagocytes
Černý, Ondřej ; Šebo, Peter (advisor) ; Černý, Jan (referee) ; Dráber, Petr (referee)
The adenylate cyclase toxin (CyaA) plays a key role in the virulence of Bordetella pertussis. CyaA penetrates CR3-expressing phagocytes and catalyzes the uncontrolled conversion of cytosolic ATP to the key second messenger molecule cAMP. This paralyzes the capacity of neutrophils and macrophages to kill bacteria by oxidative burst and opsonophagocytic mechanisms. Here we show that CyaA suppresses the production of bactericidal reactive oxygen and nitrogen species in neutrophils and macrophages, respectively. The inhibition of reactive oxygen species (ROS) production is most-likely achieved by the combined PKA-dependent inhibition of PLC and Epac-dependent dysregulation of NADPH oxidase assembly. Activation of PKA or Epac interfered with fMLP-induced ROS production and the inhibition of PKA partially reversed the CyaA-mediated inhibition of ROS production. CyaA/cAMP signaling then inhibited DAG formation, while the PIP3 formation was not influenced. These results suggest that cAMP produced by CyaA influences the composition of target membranes. We further show here that cAMP signaling through the PKA pathway activates the tyrosine phosphatase SHP-1 and suppresses the production of reactive nitrogen species (RNS) in macrophages. Selective activation of PKA interfered with LPS- induced iNOS expression...
Signaling effects of adenylate cyclase toxin action on phagocytes
Černý, Ondřej
The adenylate cyclase toxin (CyaA) plays a key role in the virulence of Bordetella pertussis. CyaA penetrates CR3-expressing phagocytes and catalyzes the uncontrolled conversion of cytosolic ATP to the key second messenger molecule cAMP. This paralyzes the capacity of neutrophils and macrophages to kill bacteria by oxidative burst and opsonophagocytic mechanisms. Here we show that CyaA suppresses the production of bactericidal reactive oxygen and nitrogen species in neutrophils and macrophages, respectively. The inhibition of reactive oxygen species (ROS) production is most-likely achieved by the combined PKA-dependent inhibition of PLC and Epac-dependent dysregulation of NADPH oxidase assembly. Activation of PKA or Epac interfered with fMLP-induced ROS production and the inhibition of PKA partially reversed the CyaA-mediated inhibition of ROS production. CyaA/cAMP signaling then inhibited DAG formation, while the PIP3 formation was not influenced. These results suggest that cAMP produced by CyaA influences the composition of target membranes. We further show here that cAMP signaling through the PKA pathway activates the tyrosine phosphatase SHP-1 and suppresses the production of reactive nitrogen species (RNS) in macrophages. Selective activation of PKA interfered with LPS- induced iNOS expression...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.